Cost Analysis and Economic Evaluation for The Fabrication Activated Carbon Nanomaterials from Durian Seeds Utilizing Ionic Liquids
Main Article Content
Waste Agricultural Biomass (WAB) is a challenging problem in this modern era. The purpose of this study was to evaluate the economic feasibility of manufacturing carbon nanomaterials from durian waste biomass using ionic liquids. Several economic evaluation parameters are analyzed to inform the production potential of valuable materials from Biomass. The results showed that the production of carbon nanoparticles from biomass is quite prospective. Technical analysis for converting 250 kg of waste durian seeds shows the total cost of the equipment purchased was USD 12,086. Adding the Lang Factor, the total investment cost should be less than USD 53,661. This value is relatively economical (ie the project requires less investment funds) to reduce 75 tons per year or 100 tons per 20 project years. Compared to the total amount of degraded durian seed waste, the value is only around 18 USD per ton. Indeed, it is inexpensive to access a problem solver in degrading a ton of durian seed waste. To ensure project feasibility, projects are assessed from ideal to worst conditions in production, including labor, sales, raw materials, utilities, and external conditions (ie, taxes and subsidiaries).
Anastopoulos, I., Pashalidis, I., Hosseini-Bandegharaei, A., Giannakoudakis, D. A., Robalds, A., Usman, M., Escudero, L. B., Zhou, Y., Colmenares, J. C., Núñez-Delgado, A., & Lima, É. C. (2019). Agricultural biomass/waste as adsorbents for toxic metal decontamination of aqueous solutions. Journal of Molecular Liquids, 295, 111684. https://doi.org/10.1016/J.MOLLIQ.2019.111684
Cornelia, M., Siratantri, T., & Prawita, R. (2015). The Utilization of Extract Durian (Durio zibethinus L.) Seed Gum as an Emulsifier in Vegan Mayonnaise. Procedia Food Science, 3, 1–18. https://doi.org/10.1016/J.PROFOO.2015.01.001
de Vries, A., & Stoll, C. (2021). Bitcoin’s growing e-waste problem. Resources, Conservation and Recycling, 175, 105901. https://doi.org/10.1016/J.RESCONREC.2021.105901
Dong, K., Liu, X., Dong, H., Zhang, X., & Zhang, S. (2017). Multiscale Studies on Ionic Liquids. Chemical Reviews, 117(10), 6636–6695. https://doi.org/10.1021/acs.chemrev.6b00776
Duque-Acevedo, M., Belmonte-Ureña, L. J., Cortés-García, F. J., & Camacho-Ferre, F. (2020). Agricultural waste: Review of the evolution, approaches and perspectives on alternative uses. Global Ecology and Conservation, 22, e00902. https://doi.org/10.1016/J.GECCO.2020.E00902
Flieger, J., & Flieger, M. (2020). Ionic Liquids Toxicity—Benefits and Threats. International Journal of Molecular Sciences, 21(17), 6267. https://doi.org/10.3390/ijms21176267
Garrett, D. A. (2012). Chemical engineering economics. Springer Science and Business.
Hayes, R., G. Warr, G., & Atkin, R. (2015). Structure and Nanostructure in Ionic Liquids. Chemical Reviews, 115(13), 6357–6426. https://doi.org/10.1021/cr500411q
Heidarinejad, Z., Dehghani, M. H., Heidari, M., Javedan, G., Ali, I., & Sillanpää, M. (2020). Methods for preparation and activation of activated carbon: a review. Environmental Chemistry Letters, 18(2), 393–415. https://doi.org/10.1007/s10311-019-00955-0
Hird, M. J. (2017). Waste, Environmental Politics and Dis/Engaged Publics. Theory, Culture and Society, 34(2–3), 187–209. https://doi.org/10.1177/0263276414565717
Ismail, A., Sudrajat, H., & Jumbianti, D. (2010). ACTIVATED CARBON FROM DURIAN SEED BY H3PO4 ACTIVATION: PREPARATION AND PORE STRUCTURE CHARACTERIZATION. Indonesian Journal of Chemistry, 10(1), 36–40. https://doi.org/10.22146/ijc.21495
Lei, Z., Chen, B., Koo, Y. M., & Macfarlane, D. R. (2017). Introduction: Ionic Liquids. Chemical Reviews, 117(10), 6633–6635. https://doi.org/10.1021/acs.chemrev.7b00246
Mahar, R., Sahito, A., & Uqaili, M. (2012). Biomethanization Potential of Waste Agricultural Biomass in Pakistan: A Case Study. International Journal of Biomass and Renewables, 1(January), 32–37. http://ijbr.utp.edu.my/uploads/16_112_7h4ih12-07-31.pdf
Mokti, N., Borhan, A., Zaine, S. N. A., & Zaid, H. F. M. (2021). Development of rubber seed shell-activated carbon using impregnated pyridinium-based ionic liquid for enhanced CO2 adsorption. Processes, 9(7). https://doi.org/10.3390/pr9071161
Nandiyanto, A. B. D., Al Husaeni, D. F., Ragadhita, R., & Kurniawan, T. (2021). Resin-based brake pad from rice husk particles: From literature review of brake pad from agricultural waste to the techno-economic analysis. Automotive Experiences, 4(3), 131–149. https://doi.org/10.31603/ae.5217
Nandiyanto, A. B. D., Maulana, M. I., Raharjo, J., Sunarya, Y., & Minghat, D. (2020). Techno-economic analysis for the production of LaNi 5 particles. Communications in Science and Technology, 5(2), 70–84.
Nayak, R., Nguyen, L., Patnaik, A., & Khandual, A. (2021). Fashion waste management problem and sustainability: A developing country perspective. Waste Management in the Fashion and Textile Industries, 3–29. https://doi.org/10.1016/B978-0-12-818758-6.00001-6
Parajuly, K., Kuehr, R., Awasthi, A. K., Fitzpatrick, C., Lepawsky, J., Smith, E., Widmer, R., & Zeng, X. (2019). Future E-waste Scenarios. http://collections.unu.edu/view/UNU:7440#.ZGBtOAcxr1s.mendeley
Riyanto, C. A., Ampri, M. S., & Martono, Y. (2020). Synthesis and Characterization of Nano Activated Carbon from Annatto Peels (Bixa orellana L.) Viewed from Temperature Activation and Impregnation Ratio of H3PO4. EKSAKTA: Journal of Sciences and Data Analysis, 1(1), 44–50. https://doi.org/10.20885/eksakta.vol1.iss1.art7
Rogers, R. D., & Seddon, K. R. (2003). Ionic Liquids-Solvents of the Future. Science, 302, 792–793. https://doi.org/10.1126/science.1090313
Saputro, H., Liana, D. N., Firdaus, A., Mahmudin, M., Evan, B., Karsa, B. S., Perdana, V. L., Wijayanto, D. S., Bugis, H., & Fitriana, L. (2018). Preliminary study of pellets Refuse Derived Fuel (RDF-5) based on Durian waste for feedstock in fast pyrolysis. IOP Conference Series: Materials Science and Engineering, 434, 012184. https://doi.org/10.1088/1757-899X/434/1/012184
Shokry, H., Elkady, M., & Hamad, H. (2019). Nano activated carbon from industrial mine coal as adsorbents for removal of dye from simulated textile wastewater: operational parameters and mechanism study. Journal of Materials Research and Technology, 8(5), 4477–4488. https://doi.org/10.1016/J.JMRT.2019.07.061
Srisang, N., & Srisang, S. (2020). Strength, Durability and Degradation Properties of Bioplates Produced from Durian Seed Mixed with Poly(Lactic Acid). Key Engineering Materials, 858, 157–162. https://doi.org/10.4028/www.scientific.net/KEM.858.157
Suzuki, M. (1994). Activated carbon fiber: Fundamentals and applications. Carbon, 32(4), 577–586. https://doi.org/10.1016/0008-6223(94)90075-2
Tey, J. P., Careem, M. A., Yarmo, M. A., & Arof, A. K. (2016). Durian shell-based activated carbon electrode for EDLCs. Ionics, 22(7), 1209–1216. https://doi.org/10.1007/s11581-016-1640-2
Tonini, D., Albizzati, P. F., & Astrup, T. F. (2018). Environmental impacts of food waste: Learnings and challenges from a case study on UK. Waste Management, 76, 744–766. https://doi.org/10.1016/J.WASMAN.2018.03.032
Wasserscheid, P. (2006). Volatile times for ionic liquids. Nature, 439, 797–797.
Andika Purnama Shidiq , Universitas Pendidikan Indonesia
Departemen Pendidikan Kimia, Universitas Pendidikan Indonesia
Asep Bayu Dani Nandiyanto , Universitas Pendidikan Indonesia
Departemen Pendidikan Kimia, Universitas Pendidikan Indonesia
Risti Ragadhita , Universitas Pendidikan Indonesia
Departemen Pendidikan Kimia, Universitas Pendidikan Indonesia
Meli Fiandini , Universitas Pendidikan Indonesia
Departemen Pendidikan Kimia, Universitas Pendidikan Indonesia