

Contents lists available at openscie.com E-ISSN: 2961-7952 Open Global Scientific Journal DOI: 10.70110/ogsj.v4i1.46 Journal homepage: <u>https://openglobalsci.com</u>

The Role of Vitamin C, Vitamin E and Zinc Supplementation in Enhancing the Resilience of Cultured Fish to Environmental Stress: A Systematic Literature Review

Sheny Permatasari^{1*}

¹ Department of Technology and Management of Applied Aquaculture, School of Vocational Studies, IPB University, Indonesia

*Correspondence E-mail: shenypermata@apps.ipb.ac.id

ARTICLE INFO

ABSTRACT

Article History:	Background: The modern aquaculture industry faces serious
Received 10 May 2025	challenges from environmental stressors such as temperature
Revised 26 June 2025	fluctuations, deteriorating water quality, and high stocking densities,
Accepted 28 June 2025	all of which negatively affect cultured fish's growth and immune
Published 29 June 2025	competence. Micronutrient supplementation-particularly vitamin C,
	vitamin E and zinc-has enhanced fish resilience to these stressors.
Keywords:	Aims & Methods: This article was prepared using a systematic
Antioxidant,	literature-review approach on the effectiveness of vitamin C, vitamin
Environmental stressors,	E and zinc in strengthening the antioxidant and immune systems of
Immune system.	fish. A systematic literature search was conducted for articles
Vitamin C,	published within the last ten years in Scopus-or SINTA-indexed
Vitamin E,	journals that examined the effects of these micronutrients on the
Zinc.	physiological and immunological performance of cultured fish.
	Results: The evidence indicates that vitamin C at 200–400 mg kg ⁻¹
	feed, vitamin E at 50-100 mg kg ⁻¹ feed and zinc at 30–80 mg kg ⁻¹ feed
	elevate antioxidant-enzyme activity, improve tissue histology, and
	boost non-specific immune responses. Several species have
	documented positive outcomes, including Oreochromis niloticus,
	Clarias batrachus, and Rachycentron canadum. Nevertheless, inter-
	species variability, interactions with other nutrients, and limited
	molecular-level studies remain challenges. Further research is required
	to establish optimal dosages, clarify specific mechanisms of action,
	and design practical supplementation strategies for sustainable
	intensive aquaculture.

To cite this article: Permatasari, S. (2025). The role of vitamin c, vitamin e and zinc supplementation in enhancing the resilience of cultured fish to environmental stress: A systematic literature review. *Open Global Scientific Journal*, 4(1), 7–17.

This article is under a Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) License. <u>Creative Commons</u> Attribution-ShareAlike 4.0 International License Copyright ©2025 by author/s

1. Introduction

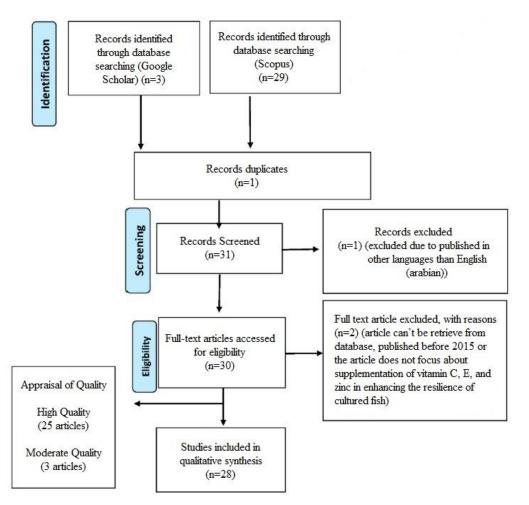
The aquaculture industry has experienced rapid growth as a key solution to meet the rising global demand for animal-based protein. However, intensive aquaculture practices often expose fish to various environmental stressors, such as temperature fluctuations, poor water quality, hypoxia, and high stocking densities. These stress conditions can disrupt fish homeostasis, reduce growth performance, and increase susceptibility to infections and diseases.

In this context, nutrition—particularly micronutrients such as vitamins and minerals—plays a critical role. Micronutrients not only support essential metabolic processes but also serve vital functions as antioxidants and immunostimulants. For instance, vitamin C has been shown to enhance immune responses and reduce oxidative stress in fish exposed to elevated temperatures (Barros *et al.*, 2015). Similarly, Zinc supplementation has been reported to strengthen immune function and upregulate genes related to growth and immune responses in fish under various environmental stressors (Mustafa *et al.*, 2024).

Improving fish resilience to environmental stress not only benefits fish health but also contributes significantly to aquaculture productivity. The productivity of Nile tilapia (*Oreochromis niloticus*), for example, plays a crucial role in supporting food security and the fisheries economy in Indonesia. Factors such as water quality management, feed selection, farming techniques, and the application of appropriate technologies have been identified as key determinants in improving tilapia aquaculture productivity (Mendrofa & Zebua, 2025).

Therefore, a comprehensive understanding of the role of micronutrients in mitigating the negative effects of environmental stress is essential. This review aims to summarize recent scientific findings on the effectiveness of vitamin C, vitamin E and zinc supplementation in enhancing the resilience of cultured fish to environmental stressors, as part of efforts to support healthier and more sustainable aquaculture systems.

2. Methods


This article was prepared using a systematic literature-review approach. The objective was to identify, evaluate, and synthesize scientific findings on how micronutrient supplementation—specifically vitamin C, vitamin E and zinc—enhances the resilience of cultured fish to environmental stressors.

Literature selection criteria

Articles were included if they (i) were published within the last ten years (2015-2025); (ii) Original research articles, including in vivo or in vitro experimental studies; (iii) studies evaluating the effects of vitamin C, zinc, or other antioxidants on stress response, growth performance, or immune function in fish; and (iv) articles published in peer-reviewed scientific journals indexed in national (Sinta) and international databases (e.g., Scopus, Web of Science, DOAJ).

Search strategy

Relevant literature was retrieved from Google Scholar, ScienceDirect, SpringerLink, and Portal Garuda using combination of keywords such as "vitamin C", "vitamin E", "zinc", "aquaculture", "environmental stressors", "antioxidant", and "immune response."

Data analysis

Eligible publications were analyzed qualitatively. Findings and conclusions were critically examined and descriptively synthesized to provide an integrated overview of how vitamin C and zinc alleviate environmentalstress effects on physiological, immunological, and growth responses in cultured fish. This qualitative-descriptive synthesis forms the scientific basis for developing nutrition-based stress-mitigation strategies in intensive aquaculture systems.

A summary table of the reviewed studies—detailing journal titles, study species, supplementation protocols, key outcomes, and Scopus indexing status—is provided below.

No	Author(s) & Year	Fish Species	Nutrient	Research Focus	Key Findings	Indexing
1	Bazina <i>et al.,</i> (2025)	Oreochromis niloticus	nano- selenium and/or vitamin E	Effects of nano- selenium and/or vitamin E supplementation on growth performance, antioxidant status, histopathology and resistance	SeNPs and/or VE enhances growth, body composition, biochemical parameters, and histopathology	Scopus
2	Le <i>et al.,</i> (2025)	Rachycentron canadum	Vitamin C	Effects of extreme temperature	Vitamin C reduced	Scopus

Table 1.	Table of the	reviewed	studies
----------	--------------	----------	---------

					mortality under	
					thermal stress	
3	Zeng <i>et al.,</i> (2024)	Ctenopharyngodo n idella	Zinc	Immunity	Zn has a positive impact on the immune function of head kidney, spleen	Scopus
	~1			~ 1	and skin	~
4	Sherif <i>et al.,</i> (2024)	Oreochromis niloticus	Vitamins C & E	Growth performance and feed utilization	Improved growth, feed efficiency, and immune response	Scopus
5	Vicente <i>et</i> <i>al.</i> , (2024)	Oreochromis niloticus	Zinc, Vitamins C & E	Immune and antioxidant responses under stress	Supplementatio n enhanced antioxidant and immune responses	Scopus
6	Mustafa <i>et</i> <i>la.</i> , (2024)	Oreochromis niloticus	Vitamin C & Zinc	Cold water stress	Combined Vitamin C and Zinc supplementation in improving the immune response and growth performance	Scopus
7	Farag <i>et al.,</i> (2024)	Oreochromis niloticus	Vitamin E	Vitamin E nanoparticles enhance performance and immune status of Nile tilapia	Fish were immune boosted, becoming less vulnerable to A. hydrophila infection	Scopus
8	Elnagar <i>et</i> <i>al.</i> , (2024)	Oreochromis niloticus	chitosan- vitamin C and vitamin E	A blend of chitosan- vitamin C and vitamin E nanoparticles robust the immunosuppressed	Nile tilapia diet could increase immune and antioxidant- related gene expression to counteract <i>S.</i> <i>agalactiae</i> infection	Scopus
9	Jewel <i>et al.,</i> (2024)	Clarias batrachus	Zinc nanoparticl es	Growth and nutritional quality	Improved growth and nutritional profile	Scopus
10	Rathore <i>et</i> <i>al.</i> , (2023)	Oreochromis niloticus	Nano- selenium and Vitamin C	Dietary Administration of Engineered Nano- selenium and Vitamin C	Supplementatio n with nano-Se and VC is noteworthy for improving	Scopus

						1
				Ameliorates	growth, serum	
				Immune Response,	biochemical	
				Nutritional	status, immune	
				Physiology,	response,	
				Oxidative Stress,	antioxidant	
				and Resistance	status, and	
					disease	
					resistance	
11	Inarto <i>et al.,</i>	Oreochromis	Zinc	The effects of	Zn	Scopus
	(2023)	niloticus		dietary organic zinc	supplementation	
	· · ·			(Zn)	enhancing	
				supplementation	growth	
				11	performance	
12	Rahman <i>et</i>	Various species	Vitamin C	Effects of Dietary	Significantly	Scopus
12	al., (2023)	various species	v hummi C	Vitamin C on the	improved the	Scopus
	un, (2023)			Growth	growth	
				Performance,	performance,	
				Antioxidant	antioxidant	
				Activity and	activity,	
				Disease Resistance	immune	
				of Fish		
				01 1 1811	response and disease	
					resistance of	
12	IZ (1	D : 1	7.		fish	C
13	Kumar <i>et al.</i> , (2022)	Pangasianodon	Zinc	Nano-zinc enhances	Zn-NPs diets	Scopus
	(2023)	hypophthalmus		gene regulation of	mitigate	
				non-specific	ammonia and	
				immunity and	arsenic toxicity,	
				antioxidative status	and high-	
					temperature	
					stress	
14	Rohani <i>et al.,</i>	Oreochromis	Zinc &	Effects of Zn and	Zn and Vit E	Scopus
	(2022)	niloticus	Vitamin E	VE addition in the	can be	
				diet on growth and	effectively	
				feed utilization	incorporated	
					into the diets of	
					Nile tilapia for	
					better growth	
					with maximum	
					feed utilization	
15	Ibrahim et	Oreochromis	Selenium	Dual effect of	Effects of	Scopus
	al., (2021)	niloticus	loaded	selenium loaded	SeChNPs on	
			chitosan	chitosan	Nile tilapia	
				nanoparticles on	growth resulted	
				growth, antioxidant,	from immune	
				immune related	stimulatory and	
				genes expression	free radicals	
				- 1	scavenging	
					effects	
16	Perera &	Oreochromis	Vitamin C	Potential role of L-	Vitamin C (L-	Scopus
	Bhujel	niloticus		ascorbic acid	ascorbic acid,	×
	(2021)			(Vitamin C)	AA)	
L	()		1			

				[
					supplementation	
					would benefit in	
					terms of	
					survival,	
					growth, and	
					stress resistance	
17	Wang et al.,	Eriocheir sinensis	Zinc	Immunity and LPS	Enhanced	Scopus
	(2021)			tolerance	growth and	
					immune-related	
					gene expression	
18	Ibrahim <i>et</i>	Oreochromis	Vitamin C	Growth, immunity,	Improved	Scopus
	al., (2020)	niloticus		histology,	growth and	_
				Aeromonas	disease	
				resistance	resistance	
19	El-Gabri et	Oreochromis	Vitamin C	Growth, antioxidant	Enhancing the	Scopus
	<i>al.</i> , (2020)	niloticus		activity, immune	growth, hepatic	- I 222
	, (2020)			status, tissue	and intestinal	
				histomorphology,	structures,	
				and disease	immune status,	
				resistance	and resistance	
				resistance	against A.	
					sobria	
20	Allraladi A	Oreochromis	Vitamins C	Vitamins E and C	vitamin E and C	Second
20	Alkaladi, A		& E	ameliorate the		Scopus
	(2019)	niloticus	αE		highly effective	
				oxidative stresses	in alleviation	
21		0 1 .			the toxic effect	9
21	Abdelazim <i>et</i>	Oreochromis	ZnO-NPs,	Oxidative stress and	Vitamins C & E	Scopus
	al., (2018)	niloticus	Vitamins C	tissue protection	mitigated ZnO-	
			& E		NP-induced	
					oxidative stress	~
22	Farsani <i>et al.</i> ,	Oreochromis	Vitamin E	The protective role	Vitamin E	Scopus
	(2017)	niloticus		of vitamin E	affecting	
					antioxidant	
					defenses	
23	Lu et al.,	Pelteobagrus	Vitamin E	Effects of dietary	MDA	Scopus
	(2016)	fulvidraco		vitamin E on the	decreased,	
				growth	higher	
				performance,	lysozyme, and	
				antioxidant status	higher	
				and innate immune	cumulative	
				response	survival	
24	Alkaladi et	Oreochromis	Vitamins C	Hematological and	Significant	Scopus
	al., (2015)	niloticus	& E	biochemical	increase in the	_
				investigations on the	serum levels of	
				effect of vitamin E	alkaline	
				and C	phosphatase,	
					aminotransferas	
					es, urea,	
					creatinine and	
					erythrocytic	
					nuclear	
L	L		l		nuclear	

25	D 1	0 1 1		T 11.	· · · · · ·	a
25	Barros <i>et al.</i> ,	Oreochromis	Vitamin C	Immunomodulatory	vitamin C	Scopus
	(2015)	niloticus		Effects of Dietary β-	increased fish	
				glucan and Vitamin	resistance to	
				С	stress and β-	
					glucan resulted	
					in reduced	
					immune	
					responses	
					regardless of the	
					vitamin C	
					supplementation	
					level	
26	Abdan <i>et al.</i> ,	Anguilla bicolor	Vitamin C	Effects of vitamin C	Vitamin C	Scholar
	(2024)	0		dosage levels on	increasing the	
				growth and survival	growth and	
				rate of sidat fish	survival of eel	
					fish	
27	Sumaraw et	Oreochromis	Vitamin C	Effects of Dietary	vitamin	Scholar
	al., (2024)	niloticus		Vitamin C with	C significantly	
				different dose	affects survival	
28	Komalasari	Oreochromis	Vitamin C	Effects of Dietary	The addition of	Scholar
	<i>et al.,</i> (2018)	niloticus		Vitamin C	vitamin C can	
					increase the	
					growth and	
					survival of	
					tilapia fish	

3. Results and Discussion

3.1 Mechanisms of Action of Vitamin C, Vitamin E And Zinc

3.1.1 Vitamin C, E and Zinc as Aquatic Immunostimulants

Vitamin C (ascorbic acid), vitamin E and zinc are essential micronutrients that play pivotal roles in sustaining the health and immune competence of aquatic organisms, particularly under environmental stressors such as temperature fluctuations, deteriorating water quality, and pathogenic challenges (Kumar *et al.*, 2023; Mustafa *et al.*, 2024; Sherif *et al.*, 2024). As a potent antioxidant, vitamin C neutralizes reactive oxygen species (ROS) generated in excess during oxidative stress. Its principal functions include collagen synthesis, tissue regeneration, and immune stimulation via enhanced lymphocyte proliferation and antibody production (El-Gabri *et al.*, 2020).

Vitamin E (VE) is an essential vitamin liposoluble antioxidant in aquatic animals that is usually lost during feed processing and digestion, whereas nano-chitosan, a polysaccharide, could protect VE. Vitamin E (a liposoluble vitamin) is the most reliable antioxidant and immunostimulant agent (Farag *et al.*, 2024). It inhibits lipid peroxidation and protects animal cells against generated reactive oxygen species (ROS) (Lu *et al.*, 2016).

Conversely, Zinc acts as a co-factor for important enzymes involved in the proper functioning of the antioxidant defense system, which protects cells against oxidative damage, acts in the stabilization of membranes and inhibits the enzyme nicotinamide adenine dinucleotide phosphate oxidase (NADPH-Oxidase) (Marreiro *et al.*, 2017). Zinc also regulates immune-cell proliferation, phagocytic activity, wound healing, and tissue regeneration. Zinc particles are recognized for its ability to elevate fish health and well-being, enhancing antimicrobial and antioxidant capacities and reinforcing the immune system (Jewel *et al.*, 2022).

Combined supplementation of vitamin C, E and zinc exerts synergistic effects, stabilizing cellular redox balance and strengthening host defences against oxidative stress. Studies have shown that concurrent administration of these micronutrients improves the immune response and growth performance in fish (Rohani *et al.*, 2022; Mustafa *et al.*, 2024). Accordingly, the inclusion of vitamin C, E and zinc as immunostimulants in feed or culture systems represents an effective strategy for safeguarding fish and shrimp health under intensive farming conditions.

3.1.2 Efficacy in Diverse Cultured Fish Species

Extensive research confirms that vitamin C and zinc supplementation enhances stress resilience in several aquaculture species, including Nile tilapia (*Oreochromis niloticus*), African catfish (*Clarias gariepinus*), and common carp (*Cyprinus carpio*). Vitamin C, a strong antioxidant, supports collagen synthesis, tissue repair, and adaptive immunity (El-Gabri *et al.*, 2020). In *O. niloticus*, dietary vitamin C significantly improves growth, antioxidant capacity, and the histological integrity of liver and intestinal tissues while elevating resistance to *Aeromonas sobria* infection (Ibrahim *et al.*, 2020). Le *et al.*, (2025) further demonstrated that vitamin C enhances thermal tolerance in cobia (*Rachycentron canadum*), lowering mortality and maintaining physiological stability under extreme temperatures. In *O. niloticus*, dietary vitamin E enhanced growth performance, feed utilization, health status and immune response (Sherif *et al.*, 2024).

Zinc is equally critical, acting as a co-factor for antioxidant enzymes such as SOD and contributing to nonspecific immune defence. Zeng *et al.*, (2024) reported that zinc has a positive impact on the immune function of head kidney, spleen and skin of grass carp. In Chinese mitten crab (*Eriocheir sinensis*), zinc supplementation increased acid and alkaline phosphatase activities, antioxidant capacity, and the expression of immune-related genes, thereby improving tolerance to lipopolysaccharide exposure (Wang *et al.*, 2021).

Synergistic effects have also been observed when vitamin C is combined with other micronutrients. Alafari *et al.* (2025) found that vitamin C plus nano-selenium enhanced growth, haematological status, tissue morphology, and resistance to *Saprolegnia ferax* infection in Nile tilapia. Collectively, these findings underscore the value of vitamin C and zinc—administered singly or in combination—as preventive nutritional strategies to bolster fish health and optimise productivity in intensive aquaculture systems.

Multiple studies consistently show that vitamin C and vitamin E supplementation reduces malondialdehyde (MDA) levels, a biomarker of oxidative stress, while boosting antioxidant-enzyme activities (Mustafa *et al.*, 2024; Farag *et al.*, 2024; Elnagar *et al.*, 2024). Zinc likewise improves immune responses and lowers mortality in fish exposed to stressors such as extreme temperature and poor water quality (Rohani *et al.*, 2022; Mustafa *et al.*, 2024). The demonstrated efficacy of both micronutrients highlights their fundamental roles in supporting fish health and performance under culture conditions.

3.2 Effective Dosage and Administration of Vitamin C, Vitamin E and Zinc in Cultured Fish

The optimal dosage of vitamin C and zinc in aquafeeds varies depending on the species, age, and environmental conditions. Vitamin C, as an essential antioxidant, plays a critical role in fish growth and immune function. Le *et al.*, (2022) demonstrated that vitamin C supplementation at 200–400 mg/kg feed reduced mortality in cobia (*Rachycentron canadum*) exposed to extreme temperatures. In Nile tilapia (*Oreochromis niloticus*), a dose of 400 mg/kg feed improved liver histology and enhanced antioxidant capacity (El-Gabri *et al.*, 2020). Similarly, studies on coho salmon (*Oncorhynchus kisutch*) reported that vitamin C doses ranging from 93.08 to 224.68 mg/kg feed significantly promoted growth and antioxidant enzyme activity (Zhang *et al.*, 2023). Farag *et al.*, (2024) demonstrated that vitamin E supplementation at 50, 75, and 100 mg/kg feed promoted enhance performance and immune status of Nile tilapia (*Oreochromis niloticus*).

Zinc, as a cofactor of antioxidant enzymes such as superoxide dismutase (SOD), is also vital in enhancing fish immune responses. Wang *et al.*, (2021) found that zinc supplementation at 80 mg/kg feed improved immunity and tolerance to toxic exposure in Chinese mitten crab (*Eriocheir sinensis*). For Nile tilapia, zinc proteinate at 40 mg/kg feed increased digestive enzyme activities and antioxidant capacity (Inarto *et al.*, 2023). Moreover, Alafari *et al.*, (2025) showed that combined supplementation of vitamin C and nano-selenium enhanced growth performance, hematological status, and resistance against *Saprolegnia ferax* fungal infection in Nile tilapia.

Generally, vitamin C, vitamin E and zinc are administered through feed formulations containing these micronutrients, either continuously or in cycles tailored to fish requirements. Continuous supplementation at appropriate dosages can improve growth performance and strengthen the immune system without causing toxic effects. However, dosage adjustments should be species-specific and consider fish age and culture environment quality, since excessive supplementation may lead to heavy metal accumulation or metabolic disturbances.

4. Conclusion & Recommendations

Supplementation of vitamin C, vitamin E and zinc has been proven to positively impact the physiological and immunological resilience of cultured fish, particularly in coping with environmental stressors such as temperature

fluctuations, poor water quality, and pathogen exposure. These three micronutrients play crucial roles in enhancing the endogenous antioxidant system and non-specific immune responses, thereby contributing to improved growth performance and survival rates. Various studies have demonstrated that vitamin C supplementation within the range of 200–400 mg/kg feed, vitamin E supplementation within 50-100 mg/kg feed and zinc supplementation between 30–80 mg/kg feed, depending on the species, can yield significant benefits without inducing toxic effects.

To promote sustainable aquaculture productivity, it is recommended that vitamin C, vitamin E and zinc supplementation be administered in a controlled manner through precisely formulated feeds that consider the specific requirements of fish species, growth stages, and environmental conditions. Appropriate dosage adjustments should also take into account interactions with other micronutrients to avoid undesirable antagonistic or synergistic effects. Therefore, further in-depth research is necessary to elucidate the molecular mechanisms, assess the effectiveness of combined micronutrient formulations, and develop cost-effective, practical supplementation strategies for industrial-scale aquaculture systems.

5. References

- Abdelazim, A. M., Saadeldin, I. M., Swelum, A. A., Afifi, M. M., & Alkaladi, A. (2018). Oxidative Stress in the Muscles of the Fish Nile Tilapia Caused by Zinc Oxide Nanoparticles and Its Modulation by Vitamins C and E. Oxidative Medicine and Cellular Longevity, 1-9. doi: 10.1155/2018/6926712.
- Abdan, M., Hasri, I., & Harun, H., Suprihadi, S., Saputra, F., Fahmi, R., & Hardiansyah, H. (2024). Effects of vitamin C dosage levels on growth and survival rate of sidat fish (*Anguilla bicolor*, McClelland, 1844). *Acta Aquatica: Aquatic Sciences Journal*, 11(1), 84. doi: 10.29103/aa.v11i1.13858.
- Alafari, H., Albaqami, N., Abd El-Aziz, Y., Reyad, Y., Eissa, E. S., Kari, Z., Eissa, M., Saadiah, I., Khan, S., Munir, M., Algammal, A., Youssef, I., Elshaer, M., Abd El-Raheem, M., & Megeed, O. (2024). The effects of nano-selenium and/or vitamin C on the growth performance, blood health, organ histology, molecular alterations, and disease resistance of Nile tilapia (*Oreochromis niloticus*) against *Saprolegnia ferax*. *Aquaculture International*, 33(1),65-85. doi: 10.1007/s10499-024-01760-5.
- Al-Gabri, N., Ibrahim, R., Ahmed, S., Amer, S., Ahmed, A., Abdelwarith, A. A., Younis, E. M., Metwally, A. (2020). Influence of vitamin C feed supplementation on the growth, antioxidant activity, immune status, tissue histomorphology, and disease resistance in Nile tilapia, *Oreochromis niloticus*. Aquaculture Reports. 100545. 10.1016/j.aqrep.2020.100545.
- Alkaladi A., El-Deen N. A., Afifi, M., & Zinadah, O. A. (2015). Hematological and biochemical investigations on the effect of vitamin E and C on *Oreochromis niloticus* exposed to zinc oxide nanoparticles. *Saudi J Biol Sci*, 22(5), 556-563. doi: 10.1016/j.sjbs.2015.02.012.
- Alkaladi A. (2019). Vitamins E and C ameliorate the oxidative stresses induced by zinc oxide nanoparticles on liver and gills of *Oreochromis niloticus*. *Saudi J Biol Sci*. 26(2):357-362. doi: 10.1016/j.sjbs.2018.07.001.
- Barros, M. M., Falcon, D. R., Orsi, R. O., Pezzato, L. E., Fernandes Junior, A. C., Fernandes Junior, A., de Carvalho, P. L. P. F., Padovani, C. R., Guimarães, I. G., & Sartori, M. M. P. (2015). Immunomodulatory Effects of Dietary β-glucan and Vitamin C in Nile Tilapia, *Oreochromis niloticus* L., Subjected to Coldinduced Stress or Bacterial Challenge. *Journal of The World Aquaculture Society*, 46, 363-380. <u>https://doi.org/10.1111/jwas.12202</u>.
- Bazina, W., Tawfik, W., Ghany, El., Saadony, S., Kari, Z., Alamoudi, M., Aly, Mohamed., Younis, A., Mathew, R., Eissa, M., Munir, M., Saadiah, I., Yousef, I., Omar, Y., Eissa, E. S., Abd Elnabi, H. (2025). Effects of nano-selenium and/or vitamin E supplementation on growth performance, antioxidant status, histopathology and resistance to *Aspergillus flavus* in Nile tilapia (*Oreochromis niloticus*). *BMC Veterinary Research*, 21. doi: 10.1186/s12917-025-04471-y.
- Elnagar, M. A., Khalil, R. H., Talaat, T. S., & Sherif, A. H. (2024). A blend of chitosan-vitamin C and vitamin E nanoparticles robust the immunosuppressed- status in Nile tilapia treated with salt. *BMC Veterinary Research*, 20(1), 331. doi: 10.1186/s12917-024-04180-y.
- Farag, E. A. H., Baromh, M. Z., El-Kalamwi, N., & Sherif, A. H. (2024). Vitamin E nanoparticles enhance performance and immune status of Nile tilapia. BMC Veterinary Research, 20(1), 561. doi: <u>10.1186/s12917-024-04398-w</u>.
- Farsani, G. H., Doria, H. B., Jamali H., Hasanpour, S., Mehdipour, N., & Rashidiyan G. (2017). The protective role of vitamin E on *Oreochromis niloticus* exposed to ZnONP. *Ecotoxicol Environ Saf*, 145, 1-7. doi:

10.1016/j.ecoenv.2017.07.005.

- Ibrahim, R. E., Ahmed, S. A., Amer, S. A., Younis, E. M., & Abdel-Warith, A.-W. A. (2020). Effects of dietary vitamin C on growth, antioxidant activity, immune status, tissue histomorphology, and disease resistance in Nile tilapia (*Oreochromis niloticus*). Aquaculture Reports, 18, 100545. https://doi.org/10.1016/j.aqrep.2020.100545.
- Ibrahim, D., Neamat-Allah, A. N. F., Ibrahim, S. M., Eissa, H. M., Fawzey, M. M., Mostafa, D. I. A., El-Kader, S. A. A., Khater, S. I., & Khater, S. (2021). Dual effect of selenium loaded chitosan nanoparticles on growth, antioxidant, immune related genes expression, transcriptomics modulation of caspase 1, cytochrome P450 and heat shock protein and Aeromonas hydrophila resistance of Nile Tilapia (*Oreochromis niloticus*). Fish Shellfish Immunollogy, 110, 91-99. doi: 10.1016/j.fsi.2021.01.003.
- Inarto, H., Ekasari, J., Jusadi, D., Nasrullah, H., & Suprayudi, M. A. (2023). Dietary Supplementation of Organic Zn Improves Digestive Enzyme Activities, Antioxidant Response, and Growth Performance of Nile Tilapia Oreochromis sp. Research Square. <u>https://doi.org/10.21203/rs.3.rs-3159451/v1</u>.
- Jewel, A. S, Haque, A., Akter, N., Akter, S., Satter, A., Sarker, P. K., Marshall, D. J., Paray, B. A., & Hossain, M. B. (2024). Effects of dietary supplementation of Zn-nanoparticles on the growth performance and nutritional quality of Asian catfish, *Clarias batrachus. Front. Sustain. Food Syst*, 8, 1410557. doi: 10.3389/fsufs.2024.1410557.
- Kumar, N., Singh, D. K., Chandan, N. K., Thorat, S. T., Patole, B. P., Gite, A., & Reddy, K. S. (2023). Nano-zinc enhances gene regulation of non-specific immunity and antioxidative status to mitigate multiple stresses in fish. *Scientific Reports*, 13, 5015. <u>https://doi.org/10.1038/s41598-023-32296-y</u>.
- Komalasari, S. S., Subandiyono, S., & Hastuti, S. (2018). Pengaruh Vitamin C Pada Pakan Komersil Dan Kepadatan Ikan Terhadap Kelulushidupan Serta Pertumbuhan Ikan Nila (*Oreochromis niloticus*). Sains Akuakultur Tropis : Indonesian Journal of Tropical Aquaculture, 1(1), 31-41. https://doi.org/10.14710/sat.v1i1.2453.
- Le, M. H., Hua, D. N. T., Dinh, K. V., & Manh, N. V. (2025). Dietary vitamin C can alleviate the lethal effects of extreme temperature on juveniles of cobia *Rachycentron canadum*. *Fisheries and Aquatic Sciences*, 28(2), 120–133. DOI: <u>https://doi.org/10.47853/FAS.2025.e12</u>.
- Lu, Y., Liang, X. P., Jin, M., Sun, P., Ma, H. N., Yuan, Y., & Zhou, Q. C. (2016). Effects of dietary vitamin E on the growth performance, antioxidant status and innate immune response in juvenile yellow catfish (*Pelteobagrus fulvidraco*). Aquaculture. 464:609–17. <u>https://doi.org/10.1016/j.aquaculture.2016.08.009</u>.
- Marreiro, D. D., Cruz, K. J., Morais, J. B., Beserra, J. B., Severo, J. S., & de Oliveira, A. R. (2017). Zinc and Oxidative Stress: Current Mechanisms. *Antioxidants (Basel)*, 6(2), 24. doi: 10.3390/antiox6020024.
- Mendrofa K. H., & Zebua, E. K. (2025). Analisis Faktor-Faktor yang Mempengaruhi Produktivitas Budidaya Ikan Nila di Indonesia: Studi Literatur. Zoologi: Jurnal Ilmu Peternakan, Ilmu Perikanan, Ilmu Kedokteran Hewan, 3(1), 73–88. <u>https://doi.org/10.62951/zoologi.v3i1.104</u>.
- Mustafa, A., Belavilas, M., Hossain, R., & Mishu, I. (2024). Immunological effects of vitamin C and zinc on tilapia (*Oreochromis niloticus*) exposed to cold water stress. *PLOS ONE*, 19(9), e0311078.
- Perera, A., & Bhujel, R. (2021). Potential role of L-ascorbic acid with Field cricket (*Gryllus bimaculatus*) meal in diets of Nile Tilapia (*Oreochromis niloticus*) during sex reversal and nursing. *Israeli Journal of Aquaculture* - *Bamidgeh*. 73. doi: 10.46989/001c.18901.
- Rathore, S.S., Hanumappa, S. M., Yusufzai, S. I., Suyani, N. K., Al-Mamun, M. A., Nasren, S., Sidiq, M. J., Hanumanthappa, S. K., & Kalyani, R. (2023). *Biology Trace Element Research*, 201(8), 4079-4092. doi:10.1007/s12011-022-03473-3.
- Rahman, M. H., Alam, M. A., Flura, Sultana, S., & Islam, M. R. (2023). Effects of Dietary Vitamin C on the Growth Performance, Antioxidant Activity and Disease Resistance of Fish: A Review. *European Journal* of Theoretical and Applied Science, 1(5), 751-768.
- Rohani, M. F., Bristy, A. A. Hasan, J., Hossain, M. K. & Shahjahan, M. (2022). Dietary Zinc in Association with Vitamin E Promotes Growth Performance of Nile Tilapia. *Biological Trace Element Research*, 200(9), 4150-4159. doi: 10.1007/s12011-021-03001-9.
- Sherif, A. H, Khalil, R. H, Talaat, T. S., Baromh, M. Z., & Elnagar, M. A. (2024). Dietary nanocomposite of vitamin C and vitamin E enhanced the performance of Nile tilapia. *Sci Rep: Nature Research*, 14, 15648. <u>https://doi.org/10.1038/s41598-024-65507-1</u>.

- Sumaraw, A. Y., Mulis, & Ahmad, I. G. (2024). Pengaruh Penambahan Vitamin C Dosis Berbeda Terhadap Pertumbuhan Dan Kelangsungan Hidup Ikan Nila (*Oreochromis niloticus*) Betina. Acropora, 7(1), 18-27. DOI: 10.31957// acr.v7i1.3781.
- Vicente, I. S. T., Fleuri, L. F., Xavier, W. d. S., Guimarães, M. G., de Carvalho, P. L. P. F., Rodrigues, E. J. D., Fonseca Alves, C. E., Nunes, A., Lima, G. P. P., Kadri, S. M., Pezzato, L. E., & Barros, M. M. (2024). The Effects of Dietary Orange Peel Fragments Enriched with Zinc and Vitamins C and E on the Antioxidant and Immune Responses of Nile Tilapia under Stress Conditions. *Animals*, 14(20), 2962. https://doi.org/10.3390/ani14202962.
- Wang, N., Wang, X., Lin, Z., Wang, Y., Chen, X., Bu, X., Liu, S., Lei, Y., Shi, Q.,Qin, J., & Chen, L. (2021). Effects of dietary Zn on growth, antioxidant capacity, immunity and tolerance to lipopolysaccharide challenge in juvenile Chinese mitten crab (*Eriocheir sinensis*). Aquaculture Research, 53(3), 1110–1120. https://doi.org/10.1111/are.15652.
- Zeng, X., Song, Z. X., Zhou, X. Q., Jiang, W. D., Wu, P., Liu, Y., Tang, L., Li, S. W., Yang, J., & Fang, L. (2024). The emerging role of zinc on alleviating inflammatory responses and enhancing immunity in grass carp (*Ctenopharyngodon idella*). Aquaculture, 584, 101651. <u>https://doi.org/10.1016/j.aqrep.2023.101651</u>.